Skip to content

Publications

Books

Sato, H., Fehler, M. C., & Maeda, T. (2012). Seismic wave propagation and scattering in the heterogeneous earth, second edition, Springer.
(Publisher)

Online Material (in Japanese)

PyGMT-HOWTO

地震学入門

Peer-Reviewed Articles

[78] Sandanbata, O., Satake, K., Takemura, S., Watada, S., Maeda ,T., & Kubota, T. (2024). Enigmatic tsunami waves amplified by repetitive source events near Sofugan volcano, Japan. Geophysical Research Letters, 51, e2023GL106949. doi:10.1029/2023GL106949

[77] 天坂登宇伊・前田拓人・髙野智也 (2023). 深発地震の地震波動伝播シミュレーションに基づく北海道下マントルウェッジの内部減衰構造. 地震2, 76, 93-107, doi:10.4294/zisin.2022-19.

[76] 寶川瑠璃・前田拓人・髙野智也・野口科子 (2023). コーダ波振幅に基づく青森県周辺の複数観測網におけるサイト増幅特性空間分布の推定.
地震2, 76, 77-92, doi:10.4294/zisin.2022-18.

[75] Onodera, K., Maeda, T.,Nishida, K., Kawamura, T., Margerin, L., Menina, S., Lognonne, P. H., & Banerdt, W. B. (2023). Seismic scattering and absorption properties of Mars estimated through coda analysis on a long-period surface wave of S1222a marsquake. Geophysical Research Letters, 50(13), e2022GL102716, doi:10.1029/2022GL102716.

[74] Yoshimitsu, N., Maeda, T., Sei, T. (2023). Estimation of source parameters using a non-Gaussian probability density function in a Bayesian framework Earth, Planets and Space, 75, 33. doi:10.1186/s40623-023-01770-2

[73] Nardoni, C., De Siena, L., Magrini, F., Cammarano, F., Maeda, T., & Mattei, E. (2023). Earthquake characteristics and structural properties of the Southern Tyrrhenian basin from full seismic wave simulations, Surveys in Geophysics, doi:10.1007/s10712-023-09769-w

[72] Onodera, K., Kawamura, T., Tanaka, S., Ishihara, Y., & Maeda, T. (2022). Quantitative evaluation of the lunar seismic scattering and comparison between the Earth, Mars, and the Moon. Journal of Geophysical Research: Planets, 127, e2022JE007558. doi:10.1029/2022JE007558.

[71] Takeo, A., Nishida, K., Aoyama, H., Ishise, M., Kai, T., Kurihara, R., Maeda, T., Mizutani, Y., Nakashima, Y., Nagahara, S., Wang, X., Ye, L., Akuhara, T., and Aoki, Y. (2022). S-wave modelling of the Showa-Shinzan lava dome in Usu Volcano, Northern Japan, from seismic observations. Geophysical Journal International, 230(3), 1662-1678. doi:10.1093/gji/ggac111.

[70] Amezawa, Y., Maeda, T., & Kosuga, M. (2021). Migration diffusivity as a controlling factor in the duration of earthquake swarms, Earth, Planets and Space, 73, 148. doi:10.1186/s40623-021-01480-7.

[69] Furumura, T., & Maeda, T. (2021). High-resolution source imaging based on time-reversal wave propagation simulations using assimilated dense seismic records. Geophysical Journal International, 225(1), 140–157. doi:10.1093/gji/ggaa586.

[68] Onodera, K., Kawamura, T., Tanaka, S., Ishihara, Y., & Maeda, T. (2021). Numerical simulation of Lunar seismic wave propagation: Investigation of subsurface scattering properties near Apollo 12 landing site. Journal of Geophysical Research: Planets, 126(3). e2020JE006406. doi:10.1029/2020je006406.

[67] Shiina, T., Maeda, T., Kano, M., Kato, A., & Hirata, N. (2021). An optimum 2D seismic-wavefield reconstruction in densely and nonuniformly distributed stations: The Metropolitan Seismic Observation Network in Japan. Seismological Research Letters. doi:10.1785/0220200196.

[66] 大石祐介・新出孝政・山崎崇史・牧野島文泰・馬場俊孝・前田拓人・近貞直孝・対馬弘晃・高川智博 (2020), 南海トラフ巨大地震の3次元津波伝播シミュレーション, 土木学会論文集B2(海岸工学), 76(2), I_259-I_264, doi:10.2208/kaigan.76.2_I_259

[65] AWARDED 土井一生・前田拓人・釜井俊孝・王功輝 (2020), 地震波形記録による斜面崩壊の発生場所と発生形態の推定-2017年九州北部豪雨災害・日田市小野地区の斜面崩壊を例として-, 応用地質, 61(5), 245-254, doi:10.5110/jjseg.61.245
日本応用地質学会令和4年(2022)論文賞

[64] Yoshida, S., Maeda, T., & Kato, N. (2020). Earthquake triggering model based on normal-stress-dependent Nagata law: application to the 2016 Mie offshore earthquake. Earth, Planets and Space, 72(1), 141. doi:10.1186/s40623-020-01272-5.

[63] Wang, Y., Satake, K., Maeda, T., Shinohara, M., & Sakai, S. (2020). A Method of Real-Time Tsunami Detection Using Ensemble Empirical Mode Decomposition. Seismological Research Letters, 91(5), 2851–2861. doi:10.1785/0220200115.

[62] Doi, I., & Maeda, T. (2020). Landslide characteristics revealed by high-frequency seismic waves from the 2017 landslide in central Japan, Seismological Research Letters, 91(5), 2719-2729. doi:10.1785/0220200032.

[61] EDITOR'S HIGHLIGHT Oba, A., Furumura, T. & Maeda, T. (2020). Data-assimilation-based early forecasting of long-period ground motions for large earthquakes along the Nankai Trough, Journal of Geophysical Research: Solid Earth, 125, e2019JB019047. doi:10.1029/2019JB019047.
(editor's highlight at EOS)

[60] Baba, S., Takeo, A., Obara, K., Matsuzawa, T., & Maeda, T. (2020). Comprehensive detection of very low frequency earthquakes off the Hokkaido and Tohoku Pacific coasts, northeastern Japan, Journal of Geophysical Research: Solid Earth, 125, e2019JB017988. doi:10.1029/2019JB017988.

[59] EDITOR'S HIGHLIGHT Amezawa, Y., Kosuga, M., & Maeda, T. (2019). Temporal changes in the distinct scattered wave packets associated with earthquake swarm activity beneath the Moriyoshi-zan volcano, northeastern Japan, Earth, Planets and Space, 71, 132, doi:10.1186/s40623-019-1115-6.
(editor's highlight)

[58] Wang, Y., Satake, K., Sandanbata, O., Maeda, T., & Su, H.-Y. (2019). Tsunami data assimilation of cabled ocean bottom pressure records for the 2015 Torishima volcanic tsunami earthquake, Journal of Geophysical Research: Solid Earth, 124, 10413–10422. doi:10.1029/2019JB018056.

[57] Wang, Y., Maeda, T., Satake, K., Heidarzadeh, M., Su, H., Sheehan, A. F., & Gusman, A. R. (2019). Tsunami data assimilation without a dense observation network, Geophysical Research Letters, 46, 2045–2053. doi:10.1029/2018GL080930.

[56] Nishida, K., Maeda, T., & Fukao, Y. (2019). Seismic observation of tsunami at island broadband stations, Journal of Geophysical Research: Solid Earth, 124, 1910–1928. doi:10.1029/2018JB016833.

[55] Furumura, T., Maeda, T., & Oba, A. (2019). Early forecast of long-period ground motions via data assimilation of observed ground motions and wave propagation simulations, Geophysical Research Letters, 46, 138-147. doi:10.1029/2018GL081163.

[54] Takagi, R., Nishida, K., Maeda, T., and Obara, K. (2018). Ambient seismic noise wavefield in Japan characterized by polarization analysis of Hi-net records, Geophysical Journal International, 215, 1682–1699, doi:10.1093/gji/ggy334.

[53] Wang, Y., Satake, K., Maeda, T., & Gusman, A. R. (2018). Data assimilation with dispersive tsunami model: a test for the Nankai Trough, Earth, Planets and Space, 70, 131, doi:10.1186/s40623-018-0905-6.

[52] Kano, M., Aso, N., Matsuzawa, T., Ide, S., Annoura, S., Arai, R., Baba, S., Bostock, M., Chao, K., Heki, K., Itaba, S., Ito, Y., Kamaya, N., Maeda, T., Maury, J., Nakamura, M., Nishimura, T., Obana, K., Ohta, K., Poiata, N., Rousset, B., Sugioka, H., Takagi, R., Takahashi, T., Takeo, A., Tu, Y., Uchida, N., Yamashita, Y., & Obara, K. (2018). Development of a Slow Earthquake Database, Seismological Research Letters, 89(4), 1566-1575, doi:10.1785/0220180021.

[51] Kurihara, R., Obara, K., Takeo, A. & Maeda, T. (2018). Migration of deep low frequency tremor triggered by teleseismic earthquakes in the southwest Japan subduction zone, Geophysical Research Letters, 45, 3413-3419, doi:10.1002/2017GL076779.

[50] Baba, S., Takeo, A., Obara, K., Kato, A. Maeda, T., & Matsuzawa, T. (2018). Temporal activity modulation of deep very low frequency earthquakes in Shikoku, southwest Japan, Geophysical Research Letters, 45, 733-738, doi:10.1002/2017GL076122.

[49] Wang, Y., Satake, K., Maeda, T., & Gusman, A. R. (2017). Green's Function-based Tsunami Data Assimilation (GFTDA): A fast data assimilation approach toward tsunami early warning, Geophysical Research Letters, 44, 10282-10289, doi:10.1002/2017GL075307.

[48] Morioka, H., Kumagai, H., & Maeda, T. (2017). Theoretical basis of the amplitude source location method for volcano-seismic signals, Journal of Geophysical Research: Solid Earth, 122, 6538-6551, doi:10.1002/2017JB013997.

[47] AWARDED Maeda, T., Takemura, S., & Furumura, T. (2017). OpenSWPC: An open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media, Earth, Planets and Space, 69, 102, doi:10.1186/s40623-017-0687-2.
(The 2019 Research Paper Award of the Seismological Society of Japan)
(The 2022 EPS Excellent Paper Award)

[46] Wang, D., Kawakatsu, H., Zhuang, J., Mori, J., Maeda, T., Tsuruoka, H., & Zhao, X. (2017). Automated determination of magnitude and source length of large earthquakes using back-projection and P wave amplitudes, Geophysical Research Letters, 44, 5447-5456, doi:10.1002/2017GL073801.

[45] Toya, M., Kato, A., Maeda, T., Obara, K., Takeda, T. & Yamaoka, K. (2017). Down-dip variations in a subducting low-velocity zone linked to episodic tremor and slip: a new constraint from ScSp waves, Scientific Reports, 7, 2868, doi:10.1038/s41598-017-03048-6.

[44] Todoriki, M., Furumura, T., & Maeda, T. (2017). Effects of seawater on elongated duration of ground motion as well as variation in its amplitude for offshore earthquakes, Geophysical Journal International, 208, 226-233, doi:10.1093/gji/ggw388.

[43] Maeda, T., Nishida, K., Takagi, R., & Obara, K. (2016). Reconstruction of a 2D seismic wavefield by seismic gradiometry, Progress in Earth and Planetary Science, 3, 31, doi:10.1186/s40645-016-0107-4.
(日本語要旨)

[40] EDITOR'S HIGHLIGHT Gusman, A. R., Sheehan, A. F., Stake, K., Heidarzadeh, M., Mulia, I. E., & Maeda, T. (2016). Tsunami data assimilation of high-density offshore pressure gauges off Cascade from the 2012 Haida Gwaii earthquake, Geophysical Research Letters, 43, 4189-4196, doi:10.1002/2016GL068368.
(Highlight in EOS) (accompanying code)

[42] Yoshimitsu, N., Furumura, T., & Maeda, T. (2016). Geometric effect on a laboratory-scale wavefield inferred from a three-dimensional numerical simulation, Journal of Applied Geophysics, 132, 184-192, doi:10.1016/j.jappgeo.2016.07.002.

[41] EDITOR'S HIGHLIGHT Takemura, S., Maeda, T., Furumura, T., & Obara, K. (2016). Constraining the source location of the 30 May 2015 (Mw 7.9) Bonin deep-focus earthquake using seismogram envelopes of high-frequency P waveforms: Occurrence of deep-focus earthquake at the bottom of a subducting slab, Geophysical Research Letters, 43, 4297-4302, doi:10.1002/2016GL068437.

[39] Maeda, T., H. Tsushima, & Furumura, T. (2016). An effective absorbing boundary condition for linear long-wave and linear dispersive-wave tsunami simulations, Earth, Planets and Space, 68, 63, doi:10.1186/s40623-016-0436-y.
(accompanying code)

[38] Annoura, S., Obara, K., & Maeda, T. (2016). Total energy of deep low-frequency tremor in the Nankai subduction zone, southwest Japan, Geophysical Research Letters, 43, 2562-2567, doi:10.1002/2016GL067780.
(data available at the slow earthquake database)

[37] Noguchi, S, Maeda, T., and Furumura, T. (2016). Ocean-influenced Rayleigh waves from outer-rise earthquakes and their effects on durations of long-period ground motion, Geophysical Journal International, 205, 1099-1107, doi:10.1093/gji/ggw074.

[36] Takagi, R., Obara, K., & Maeda, T. (2016). Slow slip event within a gap between tremor and locked zones in the Nankai subduction zone, Geophysical Research Letters, 43, 1066-1074, doi:10.1002/2015GL066987.

[35] Sandanbata, O., Obara, K., Maeda, T., Takagi, R., & Satake, K. (2015). Sudden changes in the amplitude-frequency distribution of long-period tremors at Aso volcano, southwest Japan, Geophysical Research Letters, 42, 10256-10262, doi:10.1002/2015GL0066443.

[34] EDITOR'S HIGHLIGHT Maeda, T., Obara, K., M. Shinohara, T. Kanazawa, & K. Uehira (2015). Successive estimation of a tsunami wavefield without earthquake source data: A data assimilation approach toward real-time tsunami forecasting, Geophysical Research Letters, 42, 7923-7932, doi:10.1002/2015GL065588.
(editor's highlight) (accompanying code)

[33] Takagi, R., Nishida, K., Aoki, Y., Maeda, T., Masuda, K., Takeo, M., Obara, K., Shiomi, K., Sato, M., & K. Saito (2015). A single bit matters: Coherent noise of seismic data loggers, Seismological Research Letters, 86, 901-907, doi:10.1785/0220150030.

[32] Takemura S., Furumura, T., & Maeda, T. (2015). Scattering of high-frequency seismic waves caused by irregular surface topography and small-scale velocity inhomogeneity, Geophysical Journal International, 201, 459-474, doi:10.1093/gji/ggv038.

[31] Padhy, S., Furumura, T., & Maeda, T. (2014). Decoupling of Pacific subduction zone guided waves beneath central Japan: Evidence for thin slab, Journal of Geophysical Research: Solid Earth, 119, 8478-8501, doi:10.1002/2014JB011562.

[30] Maeda, T., Furumura, T., & Obara, K. (2014). Scattering of teleseismic P-waves by the Japan Trench: A significant effect of reverberation in the seawater column, Earth and Planetary Science Letters, 397, 101-110, doi:10.1016/j.epsl.2014.04.037.

[29] Zhang, L., Utada, H., Shimizu, H., Baba, K., & Maeda, T. (2014). Three-dimensional simulation of the electromagnetic fields induced by the 2011 Tohoku tsunami, Journal of Geophysical Research: Solid Earth, 119, 150-168, doi:10.1002/2013JB010264.

[28] Oishi, Y., Piggott, M., Maeda, T., Kramer, S., Collins, G., Tsushima, H., & Furumura, T. (2013). Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model, Journal of Geophysical Research: Solid Earth, 118, 2998-3018, doi:10.1002/jgrb.50225.

[27] Maeda, T., Furumura, T., Noguchi, S., Takemura, S., Sakai, S., Shinohara, M., Iwai, K., & Lee, S.-J. (2013). Seismic and tsunami wave propagation of the 2011 Off the Pacific Coast of Tohoku Earthquake as inferred from the tsunami-coupled finite difference simulation, Bulletin of the Seismological Society of America, 103, 1456-1472, doi:10.1785/0120120118.

[26] Padhy, S., Takemura, S., Takemoto, T., Maeda, T., & Furumura, T. (2013). Spatial and temporal variations in coda attenuation associated with the 2011 Off the Pacific Coast of Tohoku, Japan (Mw 9) Earthquake, Bulletin of the Seismological Society of America, 103, 1411-1428, doi:10.1785/0120120026.

[25] Maeda, T., & Furumura, T. (2013). FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion, Pure and Applied Geophysics, 170, 109-127, doi:10.1007/s00024-011-0430-z.

[24] Noguchi, S., Maeda, T., & Furumura, T. (2013). FDM simulation of an anomalous later phase from the Japan Trench subduction zone earthquakes, Pure and Applied Geophysics, 170, 95-108, doi:10.1007/s00024-011-0412-1.

[23] Matsuzawa, T., Obara, K., Maeda, T., Asano, Y., & Saito, T. (2012). Love and Rayleigh wave microseisms excited by migrating ocean swells in the North Atlantic detected in Japan and Germany, Bulletin of the Seismological Society of America, 102, 1864-1871, doi:10.1785/0120110269.

[22] Takemoto, T., Furumura, T., Saito, T., Maeda, T., & Noguchi, S. (2012). Spatial- and frequency-dependent properties of site amplification factors in Japan derived by the coda normalization method, Bulletin of the Seismological Society of America, 102, 1462-1476, doi:10.1785/0120110188.

[21] Obara, K., Matsuzawa, T., Tanaka, S., & Maeda, T. (2012). Depth-dependent mode of tremor migration beneath Kii Peninsula, Nankai subduction zone, Geophysical Research Letters, 39, L10308, doi:10.1029/2012GL051420.

[20] Utada, H., Shimizu, H., Ogawa, T., Maeda, T., Furumura, T., Yamamoto, T., Yamazaki, N., Yoshitake, Y., & Nagamachi, S. (2011). Geomagnetic field changes in association with the 2011 Off the Pacific Coast of Tohoku Earthquake and Tsunami, Earth and Planetary Science Letters, 311, 11-27, doi:10.1016/j.epsl.2011.09.036.

[19] Maeda, T., Obara, K., Furumura, T., & Saito, T. (2011). Interference of long-period seismic wavefield observed by dense Hi-net array in Japan, Journal of Geophysical Research: Solid Earth, 116, B10303, doi:10.1029/2011JB008464.
(accompanying code)

[18] AWARDED Maeda, T., Furumura, T., Sakai, S. & Shinohara, M. (2011). Significant tsunami observed at the ocean-bottom pressure gauges during the 2011 Off the Pacific Coast of Tohoku Earthquake, Earth, Planets and Space, 63, 803-808, doi:10.5047/eps.2011.06.005.
(2013 EPS Award)

[17] Furumura, T., Takemura, S., Noguchi, S., Takemoto, T., Maeda, T., Iwai, K., & Padhy, S. (2011). Strong ground motions from the 2011 Off the Pacific Coast of Tohoku, Japan (Mw=9.0) earthquake obtained from a dense nation-wide seismic network, Landslides, 8, 333-338, doi:10.1007/s10346-011-0279-3.

[16] Obara, K., Matsuzawa, T., Tanaka, S., Kimura, T., & Maeda, T. (2011). Migration properties of non-volcanic tremor in Shikoku, southwest Japan, Geophysical Research Letters, 38, L09311, doi:10.1029/2011GL047110.

[15] Kato, A., Sakai, S., Iidaka, T., Iwasaki, T., Kurashimo, E., Igarashi, T., Hirata, N., Kanazawa, T., Katsumata, K., Takahashi, H., Honda, R., Maeda, T., Ichiyanagi, M., Yamaguchi, T., Kosuga, M., Okada, T., Nakajima, J., Hori, S., Nakayama, T., Hasegawa, A., Kono, T., Suzuki, S., Tsumura, N., Hiramatsu, Y., Sugaya, K., Hayashi, A., Hirose, T., Sawada, A., Tanaka, K., Yamanaka, Y., Nakamichi, H., Okuda, T., Iio, Y., Nishigami, K., Miyazawa, M., Wada, H., Hirano, N., Katao, H., Ohmi, S., Ito, K., Doi, I., Noda, S., Matsumoto, S., Matsushima, T., Saiga, A., Miyamachi, H., Imanishi, K., Takeda, T., Asano, Y., Yukutake, Y., Ueno, T., Maeda, T., Matsuzawa, T., Sekine, S., Matsubara, M., & Obara, K. (2011). Anomalous depth dependency of the stress field in the 2007 Noto Hanto, Japan, earthquake: Potential involvement of a deep fluid reservoir, Geophysical Research Letters, 38, L06306, doi:10.1029/2010GL046413.

[14] Furumura, T., Imai, K., & Maeda, T. (2011). A revised tsunami source model for the 1707 Hoei earthquake and simulation of tsunami inundation of Ryujin Lake, Kyushu, Japan, Journal of Geophysical Research: Solid Earth, 116, B02308, doi:10.1029/2010JB007918.

[13] EDITOR'S HIGHLIGHT AWARDED Maeda, T., Obara, K., & Yukutake, Y. (2010). Seismic velocity decrease and recovery related to earthquake swarms in a geothermal area, Earth, Planets and Space, 62, 685-691, doi:10.5047/eps.2010.08.006.
(The 2011 Research Paper Award of the Seismological Society of Japan)
(editor's highlight)

[12] Hirose, H., Asano, Y., Obara, K., Kimura, T., Matsuzawa, T., Tanaka, S., & Maeda, T. (2010). Slow earthquakes linked along dip in the Nankai subduction zone, Science, 330, 1502, doi:10.1126/science.1197102.

[11] Ueno, T., Maeda, T., Obara, K., Asano, Y., & Takeda T. (2010). Migration of low frequency tremor revealed from multiple array analyses in western Shikoku, Japan, Journal of Geophysical Research: Solid Earth, 115, B00A26, doi:10.1029/2008JB006051.

[10] Kumagai, H., Nakano, M., Maeda, T., Yepes, H., Palacios, P., Ruiz, M., Arraiz, S., Vaca, M., Molina, I., & Yamashina, T. (2010). Broadband seismic monitoring of active volcanoes using deterministic and stochastic approaches, Journal of Geophysical Research: Solid Earth, 115, B08302, doi:10.1029/2009JB006889.

[09] Obara, K., Tanaka, S., Maeda, T., Matsuzawa, T. (2010). Depth-dependent activity of non-volcanic tremor in southwest Japan, Geophysical Research Letters, 37, L13306, doi:10.1029/2010GL043679.

[08] Ito, Y., Obara, K., Matsuzawa, T., & Maeda, T. (2009). Very low frequency earthquakes related to small asperities on the plate boundary interface at the locked to aseismic transition, Journal of Geophysical Research: Solid Earth, 114, B00A13, doi:10.1029/2008JB006036.

[07] Matsuzawa, T., Obara, K., & Maeda, T. (2009). Source duration of deep very-low-frequency earthquakes in western Shikoku, Japan, Journal of Geophysical Research: Solid Earth, 114, B00A11, doi:10.1029/2008JB006044.

[06] Maeda, T., & Obara, K. (2009). Spatio-temporal distribution of seismic energy radiation from low-frequency tremor in western Shikoku, Japan, Journal of Geophysical Research: Solid Earth, 114, B00A09, doi:10.1029/2008JB006043.
(data available at the slow earthquake database)

[05] Kumagai, H., Palacios, P., Maeda, T., Castillo, D. B., & Nakano, M. (2009). Seismic tracking of lahars using tremor signals, Journal of Volcanology and Geothermal Research, 183, 112-121, doi:10.1016/j.jvolgeores.2009.03.010.

[04] Obara, K., & Maeda, T. (2009). Reverse propagation of T waves from the Emperor Seamount Chain, Geophysical Research Letters, 36, L08304, doi:10.1029/2009GL037454.

[03] Maeda, T., Sato, H. & Nishimura, T. (2008). Synthesis of coda wave envelopes in randomly inhomogeneous elastic media in a half space: Single scattering model including Rayleigh waves, Geophysical Journal International, 172, 130-154, doi:10.1111/j.1365-246X.2007.03603.x.

[02] Maeda, T., Sato, H. & Ohtake M. (2006). Constituents of vertical-component coda waves at long periods, Pure and Applied Geophysics, 163, 549-566, doi:10.1007/s00024-005-0031-9.

[01] Maeda, T., Sato, H. & Ohtake M. (2003). Synthesis of Rayleigh-wave envelope on the spherical Earth: Analytic solution of the single isotropic-scattering model for a circular source radiation, Geophysical Research Letters, 30, 1286, doi:10.1029/2002GL016629.

As a group member

Katsumata, K., Ichiyanagi, M., Ohzono, M., Aoyama, H., Tanaka, R., Takada, M., Yamaguchi, T., Okada, K., Takahashi, H., Sakai, S., Matsumoto, S., Okada, T., Matsuzawa, T., Hirano, S., Terakawa, T., Horikawa, S., Kosuga, M., Katao, H., Iio, Y., Nagaoka, A., Tsumura, N., Ueno, T., and the Group for the Aftershock Observations of the 2018 Hokkaido Eastern Iburi Earthquake (2019). The 2018 Hokkaido Eastern Iburi earthquake (MJMA = 6.7) was triggered by a strike-slip faulting in a stepover segment: insights from the aftershock distribution and the focal mechanism solution of the main shock. Earth, Planets and Space, 71, 53, doi:10.1186/s40623-019-1032-8.

Kato, A., Sakai, S., Iidaka, T., Iwasaki, T., Kurashimo, E., Igarashi, T., Hirata, N., Kanazawa, T. & Group for the aftershock observations of the 2007 Noto Hanto Earthquake (2008). Three-dimensional velocity structure in the source region of the Noto Hanto Earthquake in 2007 imaged by a dense seismic observation, Earth, Planets and Space, 60, 105-110, doi:10.1186/BF03352769.

Sakai, S., Kato, A., Iidaka, T., Iwasaki, T., Kurashimo, E., Igarashi, T., Hirata, N., Kanazawa, T., & Group for the aftershock observations of the 2007 Noto Hanto Earthquake (2008). Highly resolved distribution of aftershocks of the 2007 Noto Hanto Earthquake by a dense seismic observation, Earth, Planets and Space, 60, 83-88. doi:10.1186/BF03352765.

Research group for deep structure of Nagamachi-Rifu Fault (2002). Seismic reflection survey in Nagamachi-Rifu Fault, Sendai, Northeastern Japan, The Science Reports of the Tohoku University. Fifth Series, Tohoku Geophysical Journal, 36, 311-356.
(Article Link)

Peer-Reviewed Proceedings

井上俊介・堤重信・前田拓人・南一生 (2013). スーパーコンピュータ「京」における地震動シミュレーションコードの高性能化, 情報処理学会論文誌 コンピューティングシステム, 6, 22-30.
(Article Link)

南一生・井上俊介・堤重信・前田拓人・長谷川幸弘・黒田明義・寺井優晃・横川三津夫 (2012). 「京」コンピュータにおける疎行列とベクトル積の性能チューニングと性能評価, ハイパフォーマンスコンピューティングと計算科学シンポジウム論文集, 2012, 23-31.
(Article Link)

Articles without review

片山藍貴・前田拓人・髙野智也 (2023). 日本海東縁で発生する地震の周波数特性―規模を考慮したFrequency Index解析に基づく検討―, 東北地域災害科学研究, 60, 印刷中.

渡部大地・前田拓人・髙野智也 (2023). 2011年東北地方太平洋沖地震による地震の誘発現象の力学的検討, 東北地域災害科学研究, 59, 1-6.
(Article Link)

増永仁・前田拓人・髙野智也 (2023). 3次元不均質速度構造モデルを用いた青森県周辺の地震に対するCMT解推定, 東北地域災害科学研究, 59, 25-30.
(Article Link)

前田拓人・齊藤竜彦・馬場俊孝 (2022). 津波即時予測手法の高度化のための地震・津波統合数値シミュレーション, 月刊地球, 44(8), 374-380.

松野有希・小菅正裕・前田拓人 (2021). 北海道雌阿寒岳における深部・浅部低周波地震活動, 東北地域災害科学研究, 58, 109-114.
(Article Link)

岡田知己・中山貴史・平原 聡・立岩和也・堀内茂木・ 勝俣 啓・大園真子・小菅正裕・前田拓人・山中佳子・片尾 浩・松島 健・八木原寛・2011 年東北地方太平洋沖地震緊急観測グループ (2021). 東北地方中南部における臨時地震観測, 東北地域災害科学研究, 58, 19-24.

春山太一・小菅正裕・前田拓人 (2020). 火山性低周波地震に見られる特徴的地震波形:数値モデリングに基づく生成機構の検討, 東北地域災害科学研究, 56, 135-140.
(Article Link)

石田早祐美・前田拓人・小菅正裕 (2020).
地震波干渉法に基づく青森県周辺のレイリー波群速度分布とその周期依存性, 東北地域災害科学研究, 56, 167-172.
(Article Link)

向井優理恵・古村孝志・前田拓人 (2018). 関東平野における長周期地震動増幅の特徴的方位依存性とその要因, 地震研究所彙報, 93, 31-48.
(Article Link)

今井健太郎・前田拓人・飯沼卓史・蝦名裕一・菅原大介・今村文彦・平川新 (2015). 組み合わせ最適化手法を利用した歴史津波の波源推定法—1611年慶長奥州地震の事例—, 東北地域災害科学研究, 51, 139-144.
(Article Link)

Maeda, T., & K. Obara (2009). Hypocenter distribution of deep low-frequency tremors in Nankai subduction zone, Japan, Report of the National Research Institute for Earth Science and Disaster Prevention, 74, 12-20.
(Article Link)

前田拓人 (2007). 偏極方向と非等方多重散乱を考慮した3成分S波コーダエンベロープの数値合成, 月刊地球, 29, 232-236.

酒井慎一・加藤愛太郎・蔵下英司・飯高隆・五十嵐俊博・平田直・岩崎貴哉・金沢敏彦・渡辺茂・羽田敏夫・小林勝・三浦勝美・三浦禮子・田上貴代子・荻野泉・坂守・渡邉篤志・宮川幸治・勝俣啓・高橋浩晃・笠原稔・本多亮・前田宜浩・一柳昌義・山口照寛・小菅正裕・岡田知己・中島淳一・堀修一郎・中山貴史・新居恭平・長谷川昭・河野俊夫・鈴木秀市・津村紀子・小林里紗・野崎謙治・平松良浩・菅谷勝則・林亜以子・広瀬哲也・澤田明宏・田中敬介・山中佳子・中道治久・奥田隆・飯尾能久・西上欽也・宮澤理稔・和田博夫・平野憲雄・中尾節郎・片尾浩・大見士朗・伊藤潔・澁谷拓郎・加納靖之・土井一生・野田俊太・片木武・西辻陽平・松本聡・松島健・雑賀敦・宮町宏樹・今西和俊・桑原保人・長郁夫・干野真・武田哲也・浅野陽一・行竹洋平・上野友岳・前田拓人・松澤孝紀・関根秀太郎・松原誠・小原一成 (2007). 平成19年(2007年)能登半島地震合同余震観測, 地震研究所彙報, 82, 225-233.
(Article Link)

田中聡・浜口博之・山脇輝夫・西村太志・植木貞人・中道治久・宮町宏樹・筒井智樹・松尾のり道・及川純・大湊隆雄・宮岡一樹・鬼澤真也・森健彦・相澤幸司・中原恒・堀修一郎・佐藤俊也・河野俊夫・仁田交市・立花憲司・鍵山恒臣・萩原道徳・長田昇・井本良子・辻浩・岡田弘・前川徳光・鈴木敦生・小菅正裕・山本英和・佐野剛・奥田隆・山本圭吾・吉川慎・外輝明・松本聡・八木原寛・平野舟一郎・金尾正紀・巻和夫,小林徹,神出裕一郎,高橋透,鶴我佳代子,佐藤峰司,橋野弘憲,諏訪謡子,武田嘉人,山下哲央, Ulrich Wegler,内田直希,池田雅也・高橋努・前田拓人・馬渕弘靖・千田良道・相澤信吾・久野智晴・大谷佳子・山下幹也・小林勝幸・長濱庸介・平山繁幸・岩切誠一郎・伊藤壮介・吉川美由紀・中村めぐみ・大島光貴・森脇健 (2002). 岩手山における人工地震探査-観測および初動の読み取り-, 東京大学地震研究所彙報, 77, 1-25.
(Article Link)

Ohter Publications

前田拓人 (2013). 「京」が描き出す地震波と津波, 地震学会広報誌なゐふる, 92, 2-3.
(Article Link)

小原一成・前田拓人 (2009). T波, 地震学会広報誌なゐふる, 75, 2-3.
(Article Link)